Let P\((x,y)\) be a point on the curve \(y = x^2 - 4\).
The distance \(D\) of P from the origin O(0,0) is given by \(D = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2+y^2}\).
To minimize D, we can minimize \(D^2\). Let \(S = D^2 = x^2+y^2\).
Since \(y = x^2-4\), substitute this into the expression for S:
\(S(x) = x^2 + (x^2-4)^2\)
\(S(x) = x^2 + (x^4 - 8x^2 + 16)\)
\(S(x) = x^4 - 7x^2 + 16\).
To find the minimum value of S, we find the derivative \(S'(x)\) and set it to zero.
\(S'(x) = \frac{dS}{dx} = 4x^3 - 14x\).
Set \(S'(x) = 0\):
\(4x^3 - 14x = 0\)
\(2x(2x^2 - 7) = 0\).
This gives possible values for x:
1. \(x = 0\)
2. \(2x^2 - 7 = 0 \Rightarrow 2x^2 = 7 \Rightarrow x^2 = 7/2 \Rightarrow x = \pm\sqrt{7/2}\).
Now we find \(S''(x)\) to check for minima/maxima.
\(S''(x) = \frac{d^2S}{dx^2} = 12x^2 - 14\).
Evaluate \(S''(x)\) at the critical points:
\begin{itemize}
\item At \(x=0\): \(S''(0) = 12(0)^2 - 14 = -14\). Since \(S''(0)<0\), this corresponds to a local maximum for S.
\item At \(x^2 = 7/2\): \(S''(x) = 12(7/2) - 14 = 6 \times 7 - 14 = 42 - 14 = 28\). Since \(S''(x)>0\), these points (\(x=\pm\sqrt{7/2}\)) correspond to local minima for S.
\end{itemize}
The minimum value of S occurs when \(x^2 = 7/2\).
Substitute \(x^2 = 7/2\) into the expression for S:
\(S_{min} = (x^2)^2 - 7x^2 + 16 = (7/2)^2 - 7(7/2) + 16\)
\(S_{min} = \frac{49}{4} - \frac{49}{2} + 16 = \frac{49 - 98 + 64}{4} = \frac{113 - 98}{4} = \frac{15}{4}\).
This is the minimum value of \(D^2\).
The minimum distance \(D_{min}\) is \(\sqrt{S_{min}}\).
\(D_{min} = \sqrt{\frac{15}{4}} = \frac{\sqrt{15}}{\sqrt{4}} = \frac{\sqrt{15}}{2}\).
This matches option (a).
\[ \boxed{\frac{\sqrt{15}}{2}} \]