Step 1: Understanding the Binomial Theorem The binomial theorem states that for any positive integer \( n \): \[ (a + b)^n = \sum_{k=0}^{n} {^nC_k} a^{n-k} b^k \] Where \( {^nC_k} \) is the binomial coefficient, also written as \( ^nC_k \).
Step 2: Finding the middle term In the expansion of \( \left( \frac{10}{x} + \frac{x}{10} \right)^{10} \), since the power is 10 (an even number), there is one middle term, which is the \( \left( \frac{10}{2} + 1 = 6^{\text{th}} \right) \) term.
The general term in a binomial expansion \( (a + b)^n \) is given by: \[ T_{k+1} = {^nC_k} a^{n-k} b^k \] For the 6th term, \( k = 5 \).
Thus, the 6th term in the given expansion is:
\[ T_6 = {^{10}C_5} \left( \frac{10}{x} \right)^{10-5} \left( \frac{x}{10} \right)^5 \] \[ T_6 = {^{10}C_5} \left( \frac{10}{x} \right)^5 \left( \frac{x}{10} \right)^5 \] \[ T_6 = {^{10}C_5} \frac{10^5}{x^5} \frac{x^5}{10^5} \] \[ T_6 = {^{10}C_5} \]
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]