The mean of two numbers is the sum of the numbers divided by 2. Given that the mean of \( x \) and \( \frac{1}{x} \) is \( M \), we can write:
\[
M = \frac{x + \frac{1}{x}}{2}.
\]
We need to find the mean of \( x^3 \) and \( \frac{1}{x^3} \). The mean is:
\[
\text{Mean} = \frac{x^3 + \frac{1}{x^3}}{2}.
\]
Step 1: Use the identity for \( x + \frac{1}{x} \).
We square the equation for the mean of \( x \) and \( \frac{1}{x} \):
\[
\left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2}.
\]
Thus, we have:
\[
M^2 = x^2 + 2 + \frac{1}{x^2}.
\]
Step 2: Find \( x^3 + \frac{1}{x^3} \).
Now, we use the identity for \( x^3 + \frac{1}{x^3} \):
\[
\left( x + \frac{1}{x} \right)^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}.
\]
Thus:
\[
\left( x + \frac{1}{x} \right)^3 = x^3 + \frac{1}{x^3} + 3\left( x + \frac{1}{x} \right).
\]
Substitute \( x + \frac{1}{x} = 2M \):
\[
(2M)^3 = x^3 + \frac{1}{x^3} + 3(2M),
\]
\[
8M^3 = x^3 + \frac{1}{x^3} + 6M.
\]
Solving for \( x^3 + \frac{1}{x^3} \):
\[
x^3 + \frac{1}{x^3} = 8M^3 - 6M.
\]
Step 3: Find the mean of \( x^3 \) and \( \frac{1}{x^3} \).
Finally, the mean of \( x^3 \) and \( \frac{1}{x^3} \) is:
\[
\frac{x^3 + \frac{1}{x^3}}{2} = \frac{8M^3 - 6M}{2} = 4M^3 - 3M.
\]
Conclusion:
The mean of \( x^3 \) and \( \frac{1}{x^3} \) is \( 4M^3 - 3M \).