a=0, b=7 | \((0-6)^2 + (7-6)^2 = 36 + 1 = 37\) |
a=5, b=2 | \((5-6)^2 + (2-6)^2 = 1 + 16 = 17\) |
a=3, b=4 | \((3-6)^2 + (4-6)^2 = 9 + 4 = 13\) |
a=2, b=4 | \((2-6)^2 + (4-6)^2 = 16 + 4 = 20\) |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6