The mean from the following table will be: 
Step 1: Find class marks (midpoints).
For each class, \[ x_i = \dfrac{\text{Upper limit + Lower limit}}{2} \] 
Step 2: Find $f_i x_i$ and total. 
\[ \Sigma f_i = 30, \quad \Sigma f_i x_i = 800 \] Step 3: Apply the formula for mean.
\[ \bar{x} = \dfrac{\Sigma f_i x_i}{\Sigma f_i} = \dfrac{800}{30} = 26.66 \] Step 4: Conclusion.
Hence, the mean = 26.66.
The coefficient of correlation of the above two data series will be equal to \(\underline{\hspace{1cm}}\)
\[\begin{array}{|c|c|} \hline X & Y \\ \hline -3 & 9 \\ -2 & 4 \\ -1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 2 & 4 \\ 3 & 9 \\ \hline \end{array}\]
Identify the median class for the following grouped data:
\[\begin{array}{|c|c|} \hline \textbf{Class interval} & \textbf{Frequency} \\ \hline 5-10 & 5 \\ 10-15 & 15 \\ 15-20 & 22 \\ 20-25 & 25 \\ 25-30 & 10 \\ 30-35 & 3 \\ \hline \end{array}\]
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]