Find critical points:
\[ f'(x) = \frac{\frac{1}{x} \cdot x - \log x \cdot 1}{x^2} = \frac{1 - \log x}{x^2}. \] Set \( f'(x) = 0 \): \( 1 - \log x = 0 \Rightarrow \log x = 1 \Rightarrow x = e \).
Second derivative:
\[ f''(x) = \frac{-\frac{1}{x} \cdot x^2 - (1 - \log x) \cdot 2x}{x^4} = \frac{-x - 2x(1 - \log x)}{x^4} = \frac{-1 - 2(1 - \log x)}{x^3}. \] At \( x = e \): \( f''(e) = \frac{-1 - 2(1 - 1)}{e^3} = \frac{-1}{e^3} < 0 \), maximum.
\[ f(e) = \frac{\log e}{e} = \frac{1}{e}. \] Answer: \( \frac{1}{e} \).
The value of \[ \int \sin(\log x) \, dx + \int \cos(\log x) \, dx \] is equal to