Find critical points:
\[ f'(x) = \frac{\frac{1}{x} \cdot x - \log x \cdot 1}{x^2} = \frac{1 - \log x}{x^2}. \] Set \( f'(x) = 0 \): \( 1 - \log x = 0 \Rightarrow \log x = 1 \Rightarrow x = e \).
Second derivative:
\[ f''(x) = \frac{-\frac{1}{x} \cdot x^2 - (1 - \log x) \cdot 2x}{x^4} = \frac{-x - 2x(1 - \log x)}{x^4} = \frac{-1 - 2(1 - \log x)}{x^3}. \] At \( x = e \): \( f''(e) = \frac{-1 - 2(1 - 1)}{e^3} = \frac{-1}{e^3} < 0 \), maximum.
\[ f(e) = \frac{\log e}{e} = \frac{1}{e}. \] Answer: \( \frac{1}{e} \).
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.