Question:

The maximum value of lnxx is:

Updated On: Jun 23, 2024
  • (A) e
  • (B) 1e
  • (C) 2e
  • (D) 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Explanation:
Given: Let f(x)=lnxxDifferentiating both sides, we get:f(x)=ddx(lnxx)=1x(x)1(lnx)x2f(x)=1lnxx2f(x)=ddx(f(x))=ddx(1lnxx2)=x2ddx(1lnx)(1lnx)ddx(x2)(x2)2=x2(1x)(1lnx)(2x)x4x2x+2x(lnx)x4x(3+2(lnx))x4f(x)=(32lnx)x3To find the value of xf(x)=01lnxx2=01lnx=0lnx=1x=e1=e(lnab=cb=ac)Now, at x=e,f(e)=(32lne)e3=3+2e3=1e3<0At x=e, maximum value of f(x) obtainf(x=e)=lnxx=lnee=1e(lne=1)Hence, the correct option is (B).
Was this answer helpful?
0
0