Let base $= b$
Altitude (or perpendicular) $p \rightarrow \left(q\,\rightarrow \,p\right) $$=\sqrt{h^{2}-b^{2}}$
Area, $A=\frac{1}{2}\times base \times$ altitude
$=\frac{1}{2}\times b\times\sqrt{h^{2}-b^{2}}$$\Rightarrow \frac{dA}{db}=\frac{1}{2}\left[\sqrt{h^{2}-b^{2}}+b. \frac{-2b}{2\sqrt{h^{2}-b^{2}}}\right]$$=\frac{1}{2}\left[\frac{h^{2}-2b^{2}}{\sqrt{h^{2}-b^{2}}}\right]$
Put $\frac{dA}{db}=0, \Rightarrow b=\frac{h}{\sqrt{2}}$
Maximum area $=\frac{1}{2}\times\frac{h}{\sqrt{2}}\times\sqrt{h^{2}-\frac{h^{2}}{2}=\frac{h^{2}}{4}}$
The extrema of a function are very well known as Maxima and minima. Maxima is the maximum and minima is the minimum value of a function within the given set of ranges.
There are two types of maxima and minima that exist in a function, such as: