The percentage modulation index is:
\(μ = \frac{V_{max}-V_{min}}{V_{max}+V_{min}} \times 100\)
= \(\frac{60-20}{60+20} \times 100\)
= \(50 \%\)
Hence, the correct option is (B): \(50\%\)
In the A.C. circuit given below, voltmeters $ V_1 $ and $ V_2 $ read 100 V each. Find the reading of the voltmeter $ V_3 $ and the ammeter A. 
An alternating voltage is given by \( e = 8 \sin(628.4 t) \).
Find:
(i) Peak value of e.m.f.
(ii) Frequency of e.m.f.
(iii) Instantaneous value of e.m.f. at time \( t = 10 \, {ms} \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

When voltage changes its direction after every half cycle is known as alternating voltage. The current flows in the circuit at that time are known as alternating current. The alternating current(AC) follows the sine function which changes its polarity concerning time. Most of the electrical devices are operating on the ac voltage.
