Question:

The maximum and minimum tensions in the string whirling in a circle of radius 2.5 m are in the ratio 5:3 then its velocity is :

Updated On: May 11, 2024
  • $ \sqrt{3}:1 $
  • 7 m/s
  • $ 1:\sqrt{3} $
  • $ 7.9\times {{10}^{4}}K $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Minimum tension $ \frac{3}{2}KT=10.2\times 1.6\times {{10}^{-19}}J $ Maximum tension $ T=\frac{2}{3}\times \frac{10.2\times 1.6\times {{10}^{-19}}}{K} $ Let $ =\frac{2}{3}\times \frac{10.2\times 1.6\times {{10}^{-19}}}{1.38\times {{10}^{-23}}} $ So, $ =7.9\times {{10}^{4}}K $ ...(1) $ \upsilon =400m/s,r=160m,a=? $ ...(2) Dividing equation (1) by (2) $ F=\frac{m{{\upsilon }^{2}}}{r} $ $ ma=\frac{m{{\upsilon }^{2}}}{r} $ $ a=\frac{{{\upsilon }^{2}}}{r} $ Or $ a=\frac{{{(400)}^{2}}}{160}=\frac{16\times {{10}^{4}}}{160} $ i.e., $ ={{10}^{3}}m/{{s}^{2}}=1km/{{s}^{2}} $ $ {{T}_{1}}=\frac{m{{\upsilon }^{2}}}{r}-mg $ $ {{T}_{2}}=\frac{m{{\upsilon }^{2}}}{r}+mg $ Or $ \frac{m{{\upsilon }^{2}}}{r}=x $ Or $ {{T}_{1}}=x-mg $ $ {{T}_{2}}=x+mg $
Was this answer helpful?
0
0

Concepts Used:

Energy In Simple Harmonic Motion

We can note there involves a continuous interchange of potential and kinetic energy in a simple harmonic motion. The system that performs simple harmonic motion is called the harmonic oscillator.

Case 1: When the potential energy is zero, and the kinetic energy is a maximum at the equilibrium point where maximum displacement takes place.

Case 2: When the potential energy is maximum, and the kinetic energy is zero, at a maximum displacement point from the equilibrium point.

Case 3: The motion of the oscillating body has different values of potential and kinetic energy at other points.