Magnetic Potential Energy:
The potential energy U of a magnetic moment m in a uniform magnetic field B is given by:
U = -mB cos θ.
Stable and Unstable Equilibrium Positions:
1. At stable equilibrium (θ = 0°):
Ustable = -mB cos 0° = -mB.
2. At unstable equilibrium (θ = 180°):
Uunstable = -mB cos 180° = +mB.
Work Done:
The work done in rotating the magnet from the stable to the unstable position is the change in potential energy:
W = ΔU = Uunstable - Ustable = mB - (-mB) = 2mB.
Substitute Values:
Given:
m = 0.5 Am2, B = 8 × 10-2 T,
W = 2 × 0.5 × 8 × 10-2 = 8 × 10-2 J.
Answer: 8 × 10-2 J
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $