The emf induced in a coil is given by Faraday's law of electromagnetic induction: \[ \mathcal{E} = -\frac{d\phi}{dt} \] where:
- \( \mathcal{E} \) is the induced emf,
- \( \phi \) is the magnetic flux. The magnetic flux is given by: \[ \phi = (4t^2 + 6t + 9) \, \text{Wb} \] To find the induced emf, we differentiate \( \phi \) with respect to \( t \): \[ \frac{d\phi}{dt} = \frac{d}{dt} \left( 4t^2 + 6t + 9 \right) \] Differentiating term by term: \[ \frac{d\phi}{dt} = 8t + 6 \] Now, substituting \( t = 2 \) seconds into the equation: \[ \frac{d\phi}{dt} = 8(2) + 6 = 16 + 6 = 22 \, \text{V} \]
Therefore, the induced emf at \( t = 2 \) seconds is: \[ \mathcal{E} = 22 \, \text{V} \]
Thus, the correct answer is: \( \text{(A) 22 V} \)

200 ml of an aqueous solution contains 3.6 g of Glucose and 1.2 g of Urea maintained at a temperature equal to 27$^{\circ}$C. What is the Osmotic pressure of the solution in atmosphere units?
Given Data R = 0.082 L atm K$^{-1}$ mol$^{-1}$
Molecular Formula: Glucose = C$_6$H$_{12}$O$_6$, Urea = NH$_2$CONH$_2$