The magnetic field at the center of a semicircular wire carrying current \(I\) and having radius \(R\) is given by:
\(B = \frac{\mu_0 I}{4R}.\)
For the semicircular wires of radii \(R_1\) and \(R_2\):
\(B_{R_1} = \frac{\mu_0 I}{4R_1}, \quad B_{R_2} = \frac{\mu_0 I}{4R_2}.\)
The net magnetic field at the center \(O\) is the sum of the fields due to both semicircular wires:
\(B = B_{R_1} + B_{R_2} = \frac{\mu_0 I}{4R_1} + \frac{\mu_0 I}{4R_2}.\)
Substituting the given values:
\(B = \frac{4\pi \times 10^{-7} \cdot 4}{4 \cdot 2} + \frac{4\pi \times 10^{-7} \cdot 4}{4 \cdot 4}.\)
Simplify:
\(B = \pi \times 10^{-7} + \frac{\pi \times 10^{-7}}{2} = 2\pi \times 10^{-7} + \pi \times 10^{-7} = 3\pi \times 10^{-7} \, \text{T}.\)
Therefore:
\(\alpha = 3.\)
The Correct answer is: 3
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).