Magnetic field at the centre of a current-carrying circular coil of radius R and N turns carrying current I:
\[ B_C = \frac{\mu_0 N I}{2R} \]
(Assuming N=1 if not specified for a single coil).
Magnetic field at a point on the axis of the coil at a distance \(x\) from its centre:
\[ B_{axis} = \frac{\mu_0 N I R^2}{2(R^2+x^2)^{3/2}} \]
Given that the point on the axis is at a distance \(x=R\) from the centre.
So \( B_A \) corresponds to \( B_{axis} \) with \(x=R\).
\[ B_A = \frac{\mu_0 N I R^2}{2(R^2+R^2)^{3/2}} = \frac{\mu_0 N I R^2}{2(2R^2)^{3/2}} \]
\[ (2R^2)^{3/2} = (2R^2)\sqrt{2R^2} = 2R^2 \cdot \sqrt{2} R = 2\sqrt{2}R^3 \]
So, \( B_A = \frac{\mu_0 N I R^2}{2(2\sqrt{2}R^3)} = \frac{\mu_0 N I R^2}{4\sqrt{2}R^3} = \frac{\mu_0 N I}{4\sqrt{2}R} \).
We need the ratio \( \frac{B_C}{B_A} \):
\[ \frac{B_C}{B_A} = \frac{\frac{\mu_0 N I}{2R}}{\frac{\mu_0 N I}{4\sqrt{2}R}} \]
\[ \frac{B_C}{B_A} = \frac{\mu_0 N I}{2R} \times \frac{4\sqrt{2}R}{\mu_0 N I} \]
Cancel common terms \( \mu_0, N, I, R \):
\[ \frac{B_C}{B_A} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \]
This matches option (3).