Given, $6y=2a^{3}x^{2}+3a^{2}x-12a\quad...\left(1\right)$
For a vertex of given equation, $\frac{dy}{dx} = 0 $
$ \therefore 6 \frac{dy}{dx} = 4a^{3}x+3a^{2}= 0 $
$\Rightarrow a= -\frac{3}{4x}$
Putting the value of a in $\left(1\right)$, we get
$ 6y=2\left(\frac{-3}{4x}\right)x^{2} + 3\left(-\frac{3}{4x}\right)^{2} -12\left(-\frac{3}{4x}\right)$ $\Rightarrow6y= -\frac{27}{32x}+\frac{27}{16x}+\frac{36}{4x} $
$ \Rightarrow 192xy = -27+54+288 $
$\Rightarrow xy= \frac{315}{192} $
$= \frac{105}{64}$