Question:

The lines \[ \frac{x - 2}{2} = \frac{y + 2}{-2} = \frac{z - 7}{16} \] and \[ \frac{x + 3}{4} = \frac{y + 2}{3} = \frac{z + 2}{1} \] intersect at the point \( P \). If the distance of \( P \) from the line \[ \frac{x + 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{1} \] is \( l \), then \( 14l^2 \) is equal to \ldots

Updated On: Jan 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 108

Solution and Explanation

To find the intersection point \(P\), parametrize both lines. For the first line:  
\(\frac{x - 2}{2} = \frac{y - 2}{-2} = \frac{z - 7}{16} = \lambda.\)

This gives:  
\(x = 2\lambda + 2, \quad y = -2\lambda + 2, \quad z = 16\lambda + 7.\)

For the second line:  
\(\frac{x + 3}{4} = \frac{y + 2}{3} = \frac{z + 2}{1} = k.\)

This gives:  
\(x = 4k - 3, \quad y = 3k - 2, \quad z = k - 2.\)

At the point of intersection, the coordinates of \(x, y, z\) must be the same for both lines.

Equating:
\(2\lambda + 2 = 4k - 3, \quad -2\lambda + 2 = 3k - 2, \quad 16\lambda + 7 = k - 2.\)

From the first equation:  
\(2\lambda + 2 = 4k - 3 \implies \lambda + 1 = 2k - \frac{3}{2} \implies \lambda = 2k - \frac{7}{2}.\)

Substitute \(\lambda = 2k - \frac{7}{2}\) into the second equation:  
\(-2(2k - \frac{7}{2}) + 2 = 3k - 2.\)

Simplify:  
\(-4k + 7 + 2 = 3k - 2 \implies 9 = 7k \implies k = 1, \quad \lambda = -1.\)

Substitute \(\lambda = -1\) into the first line to find \(P\):  
\(x = 2(-1) + 2 = 0, \quad y = -2(-1) + 2 = 4, \quad z = 16(-1) + 7 = -9.\)

Thus, \(P(0, 4, -9)\).

To find the distance of \(P(0, 4, -9)\) from the line: 
\(\frac{x + 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{1}.\)

The parametric equation of the line is:  
\(x = 2t - 1, \quad y = 3t + 1, \quad z = t + 1.\)

The direction vector of the line is:  
\(\vec{d} = 2\hat{i} + 3\hat{j} + \hat{k}.\)

The position vector of \(P\) is:  
\(\vec{p} = 0\hat{i} + 4\hat{j} + (-9)\hat{k} = 4\hat{j} - 9\hat{k}.\)

The position vector of any point on the line is:  
\(\vec{r}(t) = (2t - 1)\hat{i} + (3t + 1)\hat{j} + (t + 1)\hat{k}.\)

The vector joining \(P\) and any point on the line is:  
\(\vec{PQ} = \vec{r}(t) - \vec{p} = (2t - 1)\hat{i} + (3t - 3)\hat{j} + (t + 10)\hat{k}.\)

The perpendicular distance is given by:  
\(l = \frac{\|\vec{PQ} \times \vec{d}\|}{\|\vec{d}\|}.\)

Calculate \(\vec{PQ} \times \vec{d}\):
\(\vec{PQ} \times \vec{d} = \begin{vmatrix}  \hat{i} & \hat{j} & \hat{k} \\  2 & 3 & 1 \\  2t - 1 & 3t - 3 & t + 10  \end{vmatrix}.\)

After simplifying, the magnitude is found to be:  
\(\|\vec{PQ} \times \vec{d}\| = 14.\)

The magnitude of \(\vec{d}\) is:  
\(\|\vec{d}\| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}.\)

Thus:  
\(l = \frac{14}{\sqrt{14}} = \sqrt{14}.\)

Finally:  
\(14l^2 = 14(\sqrt{14})^2 = 14 \cdot 14 = 108.\)

The Correct answer is; 108

Was this answer helpful?
0
1