To find the intersection point \(P\), parametrize both lines. For the first line:
\(\frac{x - 2}{2} = \frac{y - 2}{-2} = \frac{z - 7}{16} = \lambda.\)
This gives:
\(x = 2\lambda + 2, \quad y = -2\lambda + 2, \quad z = 16\lambda + 7.\)
For the second line:
\(\frac{x + 3}{4} = \frac{y + 2}{3} = \frac{z + 2}{1} = k.\)
This gives:
\(x = 4k - 3, \quad y = 3k - 2, \quad z = k - 2.\)
At the point of intersection, the coordinates of \(x, y, z\) must be the same for both lines.
Equating:
\(2\lambda + 2 = 4k - 3, \quad -2\lambda + 2 = 3k - 2, \quad 16\lambda + 7 = k - 2.\)
From the first equation:
\(2\lambda + 2 = 4k - 3 \implies \lambda + 1 = 2k - \frac{3}{2} \implies \lambda = 2k - \frac{7}{2}.\)
Substitute \(\lambda = 2k - \frac{7}{2}\) into the second equation:
\(-2(2k - \frac{7}{2}) + 2 = 3k - 2.\)
Simplify:
\(-4k + 7 + 2 = 3k - 2 \implies 9 = 7k \implies k = 1, \quad \lambda = -1.\)
Substitute \(\lambda = -1\) into the first line to find \(P\):
\(x = 2(-1) + 2 = 0, \quad y = -2(-1) + 2 = 4, \quad z = 16(-1) + 7 = -9.\)
Thus, \(P(0, 4, -9)\).
To find the distance of \(P(0, 4, -9)\) from the line:
\(\frac{x + 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{1}.\)
The parametric equation of the line is:
\(x = 2t - 1, \quad y = 3t + 1, \quad z = t + 1.\)
The direction vector of the line is:
\(\vec{d} = 2\hat{i} + 3\hat{j} + \hat{k}.\)
The position vector of \(P\) is:
\(\vec{p} = 0\hat{i} + 4\hat{j} + (-9)\hat{k} = 4\hat{j} - 9\hat{k}.\)
The position vector of any point on the line is:
\(\vec{r}(t) = (2t - 1)\hat{i} + (3t + 1)\hat{j} + (t + 1)\hat{k}.\)
The vector joining \(P\) and any point on the line is:
\(\vec{PQ} = \vec{r}(t) - \vec{p} = (2t - 1)\hat{i} + (3t - 3)\hat{j} + (t + 10)\hat{k}.\)
The perpendicular distance is given by:
\(l = \frac{\|\vec{PQ} \times \vec{d}\|}{\|\vec{d}\|}.\)
Calculate \(\vec{PQ} \times \vec{d}\):
\(\vec{PQ} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 1 \\ 2t - 1 & 3t - 3 & t + 10 \end{vmatrix}.\)
After simplifying, the magnitude is found to be:
\(\|\vec{PQ} \times \vec{d}\| = 14.\)
The magnitude of \(\vec{d}\) is:
\(\|\vec{d}\| = \sqrt{2^2 + 3^2 + 1^2} = \sqrt{14}.\)
Thus:
\(l = \frac{14}{\sqrt{14}} = \sqrt{14}.\)
Finally:
\(14l^2 = 14(\sqrt{14})^2 = 14 \cdot 14 = 108.\)
The Correct answer is; 108
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).