The parametric equations of the lines \( L_1 \) and \( L_2 \) are given as follows:
For line \( L_1 \), passing through \( (7, 6, 2) \) and parallel to the vector \( \mathbf{a} = -3\hat{i} + 2\hat{j} + 4\hat{k} \):
\[
L_1: (7 + \lambda(-3), 6 + \lambda(2), 2 + \lambda(4)) \quad \text{(Equation of line 1)}
\]
For line \( L_2 \), passing through \( (5, 3, 4) \) and parallel to the vector \( \mathbf{b} = 2\hat{i} + \hat{j} + 3\hat{k} \):
\[
L_2: (5 + \lambda(3), 3 + \lambda(1), 4 + \lambda(3)) \quad \text{(Equation of line 2)}
\]
The shortest distance between skew lines is given by the formula:
\[
d = \frac{| (\mathbf{b}_1 - \mathbf{b}_2) \cdot (\mathbf{a}_1 \times \mathbf{a}_2) |}{|\mathbf{a}_1 \times \mathbf{a}_2|}
\]
Where \( \mathbf{a}_1 \) and \( \mathbf{a}_2 \) are the direction vectors of the two lines, and \( \mathbf{b}_1 \) and \( \mathbf{b}_2 \) are points on the respective lines.
Here, \( \mathbf{a}_1 = (-3, 2, 4) \), \( \mathbf{a}_2 = (2, 1, 3) \), \( \mathbf{b}_1 = (7, 6, 2) \), and \( \mathbf{b}_2 = (5, 3, 4) \).
We compute the cross product \( \mathbf{a}_1 \times \mathbf{a}_2 \) first:
\[
\mathbf{a}_1 \times \mathbf{a}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} -3 & 2 & 4 2 & 1 & 3 \end{vmatrix}
= (2 \times 3 - 4 \times 1) \hat{i} - (-3 \times 3 - 4 \times 2) \hat{j} + (-3 \times 1 - 2 \times 2) \hat{k}
\]
\[
= (6 - 4)\hat{i} - (-9 - 8)\hat{j} + (-3 - 4)\hat{k}
\]
\[
= 2 \hat{i} + 17 \hat{j} - 7 \hat{k}
\]
Now, the distance is calculated using the formula above:
\[
d = \frac{|(2 \hat{i} + 17 \hat{j} - 7 \hat{k}) \cdot (2 \hat{i} + 17 \hat{j} - 7 \hat{k})|}{\sqrt{342}} = \frac{69}{\sqrt{342}} = \frac{23}{\sqrt{38}}
\]
Thus, the shortest distance between the two lines is \( \frac{23}{\sqrt{38}} \).