This problem asks for the shortest distance between two skew lines, \( L_1 \) and \( L_2 \), in three-dimensional space. We are given a point on each line and a vector parallel to each line.
The shortest distance between two skew lines, \( L_1 \) passing through point \( \mathbf{p}_1 \) with direction vector \( \mathbf{d}_1 \), and \( L_2 \) passing through point \( \mathbf{p}_2 \) with direction vector \( \mathbf{d}_2 \), is given by the formula:
\[ d = \frac{| (\mathbf{p}_2 - \mathbf{p}_1) \cdot (\mathbf{d}_1 \times \mathbf{d}_2) |}{| \mathbf{d}_1 \times \mathbf{d}_2 |} \]This formula calculates the projection of the vector connecting the two points onto the vector that is perpendicular to both lines (the cross product of their direction vectors).
Step 1: Identify the points and direction vectors for each line from the problem statement.
For line \( L_1 \):
For line \( L_2 \):
Step 2: Calculate the vector connecting the points \( P_1 \) and \( P_2 \), which is \( \mathbf{p}_2 - \mathbf{p}_1 \).
\[ \mathbf{p}_2 - \mathbf{p}_1 = (5\hat{i} + 3\hat{j} + 4\hat{k}) - (7\hat{i} + 6\hat{j} + 2\hat{k}) \] \[ \mathbf{p}_2 - \mathbf{p}_1 = (5-7)\hat{i} + (3-6)\hat{j} + (4-2)\hat{k} \] \[ \mathbf{p}_2 - \mathbf{p}_1 = -2\hat{i} - 3\hat{j} + 2\hat{k} \]Step 3: Calculate the cross product of the direction vectors, \( \mathbf{d}_1 \times \mathbf{d}_2 \).
\[ \mathbf{d}_1 \times \mathbf{d}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -3 & 2 & 4 \\ 2 & 1 & 3 \end{vmatrix} \] \[ = \hat{i}(2 \cdot 3 - 4 \cdot 1) - \hat{j}((-3) \cdot 3 - 4 \cdot 2) + \hat{k}((-3) \cdot 1 - 2 \cdot 2) \] \[ = \hat{i}(6 - 4) - \hat{j}(-9 - 8) + \hat{k}(-3 - 4) \] \[ = 2\hat{i} - (-17)\hat{j} - 7\hat{k} \] \[ \mathbf{d}_1 \times \mathbf{d}_2 = 2\hat{i} + 17\hat{j} - 7\hat{k} \]Step 4: Calculate the scalar triple product, \( (\mathbf{p}_2 - \mathbf{p}_1) \cdot (\mathbf{d}_1 \times \mathbf{d}_2) \).
\[ (-2\hat{i} - 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} + 17\hat{j} - 7\hat{k}) \] \[ = (-2)(2) + (-3)(17) + (2)(-7) \] \[ = -4 - 51 - 14 = -69 \]The absolute value is \( |-69| = 69 \).
Step 5: Calculate the magnitude of the cross product, \( |\mathbf{d}_1 \times \mathbf{d}_2| \).
\[ |\mathbf{d}_1 \times \mathbf{d}_2| = |2\hat{i} + 17\hat{j} - 7\hat{k}| \] \[ = \sqrt{(2)^2 + (17)^2 + (-7)^2} \] \[ = \sqrt{4 + 289 + 49} = \sqrt{342} \]Step 6: Substitute the values from Step 4 and Step 5 into the shortest distance formula.
\[ d = \frac{| (\mathbf{p}_2 - \mathbf{p}_1) \cdot (\mathbf{d}_1 \times \mathbf{d}_2) |}{| \mathbf{d}_1 \times \mathbf{d}_2 |} \] \[ d = \frac{69}{\sqrt{342}} \]To simplify the radical, we can factor 342: \( 342 = 9 \times 38 \). Therefore, \( \sqrt{342} = \sqrt{9 \times 38} = 3\sqrt{38} \).
\[ d = \frac{69}{3\sqrt{38}} = \frac{23}{\sqrt{38}} \]The shortest distance between the lines \( L_1 \) and \( L_2 \) is \( \frac{23}{\sqrt{38}} \).

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.