Step 1: The limiting equivalent conductivity of the electrolyte is the sum of the limiting ionic conductivities of the individual ions.
\[
\lambda_{{m}} ({NaCl}) = \lambda_{{m}} ({Na}^+) + \lambda_{{m}} ({Cl}^-)
\]
Similarly for \( {KCl} \) and \( {KBr} \), we have:
\[
\lambda_{{m}} ({KCl}) = \lambda_{{m}} ({K}^+) + \lambda_{{m}} ({Cl}^-)
\]
\[
\lambda_{{m}} ({KBr}) = \lambda_{{m}} ({K}^+) + \lambda_{{m}} ({Br}^-)
\]
Step 2: Given values:
\[
\lambda_{{m}} ({NaCl}) = 126.5 \, {S cm}^2 {eq}^{-1}, \quad \lambda_{{m}} ({KCl}) = 150.0 \, {S cm}^2 {eq}^{-1}, \quad \lambda_{{m}} ({KBr}) = 151.5 \, {S cm}^2 {eq}^{-1}
\]
\[
\lambda_{{m}} ({Br}^-) = 78 \, {S cm}^2 {eq}^{-1}
\]
Step 3: Substituting the known values into the equation for \( \lambda_{{m}} ({NaCl}) \), we get:
\[
126.5 = \lambda_{{m}} ({Na}^+) + \lambda_{{m}} ({Cl}^-)
\]
Substituting \( \lambda_{{m}} ({Cl}^-) \) from \( \lambda_{{m}} ({KCl}) \):
\[
150.0 = \lambda_{{m}} ({K}^+) + \lambda_{{m}} ({Cl}^-)
\]
Now, subtract the two equations:
\[
150.0 - 126.5 = \lambda_{{m}} ({K}^+) - \lambda_{{m}} ({Na}^+)
\]
\[
\Rightarrow 23.5 = \lambda_{{m}} ({K}^+) - \lambda_{{m}} ({Na}^+)
\]
\[
\Rightarrow \lambda_{{m}} ({Na}^+) = \lambda_{{m}} ({K}^+) - 23.5
\]
Substitute this into the equation for \( \lambda_{{m}} ({KBr}) \):
\[
151.5 = \lambda_{{m}} ({K}^+) + 78
\]
\[
\Rightarrow \lambda_{{m}} ({K}^+) = 151.5 - 78 = 73.5
\]
Now, substitute this into the equation for \( \lambda_{{m}} ({Na}^+) \):
\[
\lambda_{{m}} ({Na}^+) = 73.5 - 23.5 = 50.0
\]