Given : ellipse equation : $\div(x+1)^{2} 9+\div(y-2)^{2} 4=1$
Circle equation : $(x-1)^{2}+(y-2)^{2}=1$
$\therefore$ center of ellipse $=(-1,2)$
$a =3, b =2$
$\therefore$ length of major axis is $6$
$\therefore$ length of minor is $4$
$\Rightarrow$ center of circle is $(1,2$ with radius $r=1)$
$ \Rightarrow $ so, wecanseeindiagramthatthetwoareasdoesnotintersectortoucheachlengthiso
$\Rightarrow$ Hence, The length of common chord of the ellipse and circle is Zero(o).