Let the sides of the triangle be \( 3x \), \( 4x \), and \( 5x \). The perimeter of the triangle is given by:
\[
3x + 4x + 5x = 144
\]
\[
12x = 144 \quad \Rightarrow \quad x = 12
\]
Thus, the sides of the triangle are \( 36 \, \text{cm} \), \( 48 \, \text{cm} \), and \( 60 \, \text{cm} \).
Now, we can use Heron's formula to find the area of the triangle. The semi-perimeter \( s \) is:
\[
s = \frac{36 + 48 + 60}{2} = 72
\]
Using Heron's formula:
\[
A = \sqrt{s(s - 36)(s - 48)(s - 60)}
\]
\[
A = \sqrt{72(72 - 36)(72 - 48)(72 - 60)} = \sqrt{72 \times 36 \times 24 \times 12}
\]
\[
A = \sqrt{62208} \approx 664 \, \text{cm}^2
\]
Thus, the area of the triangle is \( 664 \, \text{cm}^2 \).