Let the natural length of the wire will be l Young?s modulus $=\frac{T}{A}\times\frac{l_{0}}{\Delta l_{0}}$ First case: $y=\frac{T_{1}}{A}=\frac{l_{0}}{\left(l_{1}-l_{0}\right)}$ Second case: $Y=\frac{T_{2}}{A}=\frac{l_{0}}{\left(l_{2}-l_{0}\right)}$ So, $\frac{T_{1}}{A}\times\frac{l_{0}}{\left(l_{2}-l_{0}\right)}=\frac{T_{2}}{A} \frac{l_{0}}{\left(l_{2}-l_{0}\right)}$ $\Rightarrow T_{1}\left(l_{2}-l_{0}\right)=T_{2}\left(l_{1}-l_{0}\right)$ $\Rightarrow T_{1} l_{2}-T_{1} l_{0}=T_{2}l_{1}-T_{2}l_{0}$ $\Rightarrow l_{0}=\frac{\left(T_{2}l_{1}-T_{2}l_{2}\right)}{\left(T_{2}-T_{1}\right)}$