Let the original dimensions be $3x$, $2x$, and $x$.
Original four-wall area:
\[
2 \times (\text{length} + \text{breadth}) \times \text{height} = 2(3x+2x)(x) = 10x^2
\]
New dimensions: length $= 6x$, breadth $= x$, height $= 0.5x$.
New four-wall area:
\[
2 \times (6x + x) \times 0.5x = 7x^2
\]
Percentage decrease:
\[
\frac{10 - 7}{10} \times 100% = 30%
\]
Wait — that’s different from given options. Let's recheck: Original area should be
\[
2 \times (3x + 2x) \times x = 10x^2
\]
New:
\[
2 \times (6x + x) \times 0.5x = 7x^2
\]
Decrease = $3x^2$ out of $16x^2$? No, correction — initial perimeter $= 3x+2x = 5x$, height $= x$ → Area = $2 \times 5x \times x = 10x^2$. New: perimeter $= 6x + x = 7x$, height $= 0.5x$ → Area = $2 \times 7x \times 0.5x = 7x^2$.
Decrease = $\frac{10-7}{10} \times 100 = 30%$.
\[
\boxed{\text{30% decrease}}
\]