The eigenvalues of a matrix \( A \) are the solutions of the characteristic equation:
\[
\text{det}(A - \lambda I) = 0,
\]
where \( I \) is the identity matrix, and \( \lambda \) is the eigenvalue. Substituting the given matrix:
\[
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{bmatrix}
-
\lambda
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda \\
\end{bmatrix}
\]
The determinant of this matrix is:
\[
\text{det}\left(\begin{bmatrix}
-\lambda & 1 & 1 \\
1 & -\lambda & 1 \\
1 & 1 & -\lambda \\
\end{bmatrix}\right)
= -\lambda^3 + 2\lambda.
\]
Thus, solving \( -\lambda^3 + 2\lambda = 0 \), we get:
\[
\lambda (\lambda^2 - 2) = 0.
\]
The roots are \( \lambda = 0, \pm \sqrt{2} \). Hence, the largest eigenvalue is:
\[
\boxed{\sqrt{2}}.
\]