Given:
\[ f(x) = x^x, \quad x > 0. \]
Taking the natural logarithm:
\[ f(x) = x \ln x. \]
Differentiating:
\[ \frac{1}{y} \frac{dy}{dx} = \ln x + 1 \implies \frac{dy}{dx} = x^x(1 + \ln x). \]
For \( f(x) \) to be strictly increasing:
\[ \frac{dy}{dx} > 0 \implies 1 + \ln x > 0. \]
Solve:
\[ \ln x > -1 \implies x > \frac{1}{e}. \]
Thus, the function is strictly increasing in:
\[ \left[\frac{1}{e}, \infty\right). \]
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)