Given:
\[ f(x) = x^x, \quad x > 0. \]
Taking the natural logarithm:
\[ f(x) = x \ln x. \]
Differentiating:
\[ \frac{1}{y} \frac{dy}{dx} = \ln x + 1 \implies \frac{dy}{dx} = x^x(1 + \ln x). \]
For \( f(x) \) to be strictly increasing:
\[ \frac{dy}{dx} > 0 \implies 1 + \ln x > 0. \]
Solve:
\[ \ln x > -1 \implies x > \frac{1}{e}. \]
Thus, the function is strictly increasing in:
\[ \left[\frac{1}{e}, \infty\right). \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: