The given differential equation is:
\[
x \frac{dy}{dx} - y = x^4 - 3x.
\]
This can be rewritten in standard linear form:
\[
\frac{dy}{dx} - \frac{y}{x} = x^3 - \frac{3}{x}.
\]
Here, the coefficient of \( y \) is \( -\frac{1}{x} \). To find the integrating factor (IF), use the formula:
\[
\text{Integrating Factor} = e^{\int P(x) \, dx},
\]
where \( P(x) = -\frac{1}{x} \). Thus:
\[
\text{IF} = e^{\int -\frac{1}{x} \, dx}.
\]
Integrating \( -\frac{1}{x} \):
\[
\int -\frac{1}{x} \, dx = -\ln|x|.
\]
So:
\[
\text{IF} = e^{-\ln|x|}.
\]
Using the property \( e^{\ln a} = a \), this simplifies to:
\[
\text{IF} = |x|^{-1}.
\]
For positive \( x \), we can write:
\[
\text{IF} = x^{-1}.
\]
Hence, the integrating factor is (C) \( x^{-1} \).