We are given the integral \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx \).
Step 1: Use substitution
Let \( u = 2^x \). Then, the differential \( du = 2^x \ln 2 \, dx \).
Now, express the integral in terms of \( u \):
\[
\int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \int \frac{du}{\sqrt{1 - u^2}}
\]
Step 2: Solve the integral
We recognize the standard integral \( \int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1}(u) \), so:
\[
\int \frac{du}{\sqrt{1 - u^2}} = \sin^{-1}(u)
\]
Substitute \( u = 2^x \) to get the final result:
\[
\frac{1}{\log 2} \sin^{-1}(2^x) + C
\]
Thus, the correct answer is \( \frac{1}{\log 2} \sin^{-1} 2^x + C \).