Question:

The integral $\int^{^{\frac{1}{2}}}_{_0} \frac{ln \left(1+2x\right)}{1+4x^{2}}dx,$ equals :

Updated On: Aug 21, 2024
  • $\frac{\pi}{4}$ ln 2
  • $\frac{\pi}{8}$ ln 2
  • $\frac{\pi}{16}$ ln 2
  • $\frac{\pi}{32}$ ln 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

$\int\limits^{1/2}_{{0}}$$\frac{\ell n\left(1+2x\right)}{1+\left(2x\right)^{2}}dx \,$ Put $2x=tan\,\theta$ $dx=\frac{1}{2}sec^{2}\,\theta\,d\theta$ at $x=0, \theta=0,$ at $x=\frac{1}{2}, \theta=\frac{\pi}{4}$ $I=\int\limits^{\pi/4}_{{0}}$$\frac{\log\left(1+tan\,\theta\right)}{1+tan^{2}\,\theta }. \frac{1}{2}\,sec^{2}\,\theta \,d\theta$ $I=\frac{1}{2} \int\limits^{\pi/4}_{{0}}\log(1\, tan\,\theta)\, d\theta\frac{1}{2}\,I_1$ $I=\int\limits^{\pi/4}_{{0}}$$\log\left[1+tan\left(\frac{\pi}{4}-\theta\right)\right]$ using property $=\int\limits^{\pi/4}_{{0}}$$\log\left[\frac{2}{1+tan\,\theta}\right]=\int\limits^{\pi/4}_{{0}}\log\, 2\,d\theta-\int\limits^{\pi/4}_{{0}}\,\log(1 +\tan\theta)\,d\theta$ $I_{1}=\frac{\pi}{4}\,\log\,2-I_{1}$ $I_{1}=\frac{\pi}{8}\ln2$ $\Rightarrow I=\frac{\pi}{16}\ln2$
Was this answer helpful?
0
0

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities