\(\tan^{-1}(2)\)
\(\tan^{-1}(2) - \frac{\pi}{4}\)
\(\frac{1}{2}\tan^{-1}(2) - \frac{\pi}{8}\)
\(\frac{1}{2}\)
\(I = \int_0^{\frac{\pi}{2}} \frac{1}{3 + 2\sin x + \cos x} \, dx\)
\(=\int_0^{\frac{\pi}{2}} \frac{1 + \tan^2\left(\frac{x}{2}\right)}{3\left(1 + \tan^2\left(\frac{x}{2}\right)\right) + 2\left(2\tan\left(\frac{x}{2}\right)\right) + \left(1 - \tan^2\left(\frac{x}{2}\right)\right)} \, dx\)
Let \(\tan\left(\frac{x}{2}\right) = t \quad \Rightarrow \quad \sec^2\left(\frac{x}{2}\right) \, dx = 2 \, dt\)
\(I = \int_0^1 \frac{2dt}{4 + 2t^2 + 4t}\)
\(I = \int_0^1 \frac{dt}{t^2 + 2t + 2}\)
\(I = \int_0^1 \frac{dt}{(t+1)^2 + 1}\)
\(I = \tan^{-1}(t+1) \Big|_{0}^{1}\)
\(=I = \tan^{-1}(2) - \frac{\pi}{4}\)
So, the correct option is (B): \(\tan^{-1}(2) - \frac{\pi}{4}\)
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{\frac{1}{\sqrt[5]{32}}}^{\frac{1}{\sqrt[5]{31}}} \frac{1}{\sqrt[5]{x^{30} + x^{25}}} dx. \]
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
If \[ \int \frac{3}{2\cos 3x \sqrt{2} \sin 2x} dx = \frac{3}{2} (\tan x)^{\beta} + \frac{3}{10} (\tan x)^4 + C \] then \( A = \) ?
Find the equivalent capacitance between A and B, where \( C = 16 \, \mu F \).
If the equation of the parabola with vertex \( \left( \frac{3}{2}, 3 \right) \) and the directrix \( x + 2y = 0 \) is \[ ax^2 + b y^2 - cxy - 30x - 60y + 225 = 0, \text{ then } \alpha + \beta + \gamma \text{ is equal to:} \]
Given below is the list of the different methods of integration that are useful in simplifying integration problems:
If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:
∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C
Here f(x) is the first function and g(x) is the second function.
The formula to integrate rational functions of the form f(x)/g(x) is:
∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx
where
f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and
g(x) = q(x).s(x)
Hence the formula for integration using the substitution method becomes:
∫g(f(x)) dx = ∫g(u)/h(u) du
This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,
∫g'(f(x)) f'(x) dx = g(f(x)) + C