Given the stress components from the figure:
- \( \sigma_x = 6 \, \text{N/mm}^2 \)
- \( \sigma_y = 3 \, \text{N/mm}^2 \)
- \( \tau_{xy} = 4 \, \text{N/mm}^2 \)
The principal stresses are calculated using the following formula:
\[
\sigma_1, \sigma_2 = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left( \frac{\sigma_x - \sigma_y}{2} \right)^2 + \tau_{xy}^2}
\]
Substitute the given values into the formula:
\[
\sigma_1 = \frac{6 + 3}{2} + \sqrt{\left( \frac{6 - 3}{2} \right)^2 + 4^2}
\]
\[
\sigma_1 = 4.5 + \sqrt{(1.5)^2 + 16}
\]
\[
\sigma_1 = 4.5 + \sqrt{2.25 + 16}
\]
\[
\sigma_1 = 4.5 + \sqrt{18.25}
\]
\[
\sigma_1 = 4.5 + 4.27 = 8.77 \, \text{N/mm}^2
\]
Thus, the magnitude of the maximum principal stress is approximately 7 N/mm² when rounded to the nearest integer.
\[
\boxed{\text{The maximum principal stress is } 7 \, \text{N/mm}^2.}
\]