Step 1: Geometry and unit vectors.
$PQ=4$, $QR=3$, $RP=5$ (a $3$–$4$–$5$ triangle).
For the slanted face $RP$, outward unit normal $\mathbf{n}=(4/5,\,3/5)$ and unit tangent $\mathbf{t}=(-3/5,\,4/5)$.
Step 2: Tractions on $RP$.
Given normal stress $\sigma_n=120$ MPa and shear stress $\tau=70$ MPa on $RP$.
Resultant force on $RP$ (unit thickness):
\[
\mathbf{F}_{RP}= (\sigma_n\,\mathbf{n}+\tau\,\mathbf{t})\times \text{area}
= (120\,\mathbf{n}+70\,\mathbf{t})\times 5.
\]
Compute components:
$120\times5\,\mathbf{n}=120(4,3)=(480,\,360)$, $70\times5\,\mathbf{t}=70(-3,4)=(-210,\,280)$.
Hence $\mathbf{F}_{RP}=(480-210,\,360+280)=(270,\,640)$.
Step 3: Forces on the other faces.
On $PQ$ (length $4$): normal stress $\sigma_x$ acts $\rightarrow$ force $\mathbf{F}_{PQ}=(-\sigma_x\cdot4,\,0)$.
On $QR$ (length $3$): normal stress $\sigma_y$ acts $\rightarrow$ force $\mathbf{F}_{QR}=(0,\,-\sigma_y\cdot3)$.
Step 4: Force equilibrium of the wedge.
$\mathbf{F}_{PQ}+\mathbf{F}_{QR}+\mathbf{F}_{RP}=\mathbf{0}$.
Thus, $-4\sigma_x+270=0 \Rightarrow \sigma_x=270/4=67.5\ \text{MPa}$.
And $-3\sigma_y+640=0 \Rightarrow \sigma_y=640/3=213.3\ \text{MPa}$.
\[
\boxed{\sigma_x=67.5\ \text{MPa}, \sigma_y=213.3\ \text{MPa}}
\]
The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
For the beam and loading shown in the figure, the second derivative of the deflection curve of the beam at the mid-point of AC is given by \( \frac{\alpha M_0}{8EI} \). The value of \( \alpha \) is ........ (rounded off to the nearest integer).