Step 1: Geometry and unit vectors.
$PQ=4$, $QR=3$, $RP=5$ (a $3$–$4$–$5$ triangle).
For the slanted face $RP$, outward unit normal $\mathbf{n}=(4/5,\,3/5)$ and unit tangent $\mathbf{t}=(-3/5,\,4/5)$.
Step 2: Tractions on $RP$.
Given normal stress $\sigma_n=120$ MPa and shear stress $\tau=70$ MPa on $RP$.
Resultant force on $RP$ (unit thickness):
\[
\mathbf{F}_{RP}= (\sigma_n\,\mathbf{n}+\tau\,\mathbf{t})\times \text{area}
               = (120\,\mathbf{n}+70\,\mathbf{t})\times 5.
\] 
Compute components:
$120\times5\,\mathbf{n}=120(4,3)=(480,\,360)$,  $70\times5\,\mathbf{t}=70(-3,4)=(-210,\,280)$.
Hence $\mathbf{F}_{RP}=(480-210,\,360+280)=(270,\,640)$.
Step 3: Forces on the other faces.
On $PQ$ (length $4$): normal stress $\sigma_x$ acts $\rightarrow$ force $\mathbf{F}_{PQ}=(-\sigma_x\cdot4,\,0)$.
On $QR$ (length $3$): normal stress $\sigma_y$ acts $\rightarrow$ force $\mathbf{F}_{QR}=(0,\,-\sigma_y\cdot3)$.
Step 4: Force equilibrium of the wedge.
$\mathbf{F}_{PQ}+\mathbf{F}_{QR}+\mathbf{F}_{RP}=\mathbf{0}$.
Thus, $-4\sigma_x+270=0 \Rightarrow \sigma_x=270/4=67.5\ \text{MPa}$.
And $-3\sigma_y+640=0 \Rightarrow \sigma_y=640/3=213.3\ \text{MPa}$.
\[
\boxed{\sigma_x=67.5\ \text{MPa}, \sigma_y=213.3\ \text{MPa}}
\]
Two soils of permeabilities \( k_1 \) and \( k_2 \) are placed in a horizontal flow apparatus, as shown in the figure. For Soil 1, \( L_1 = 50 \, {cm} \), and \( k_1 = 0.055 \, {cm/s} \); for Soil 2, \( L_2 = 30 \, {cm} \), and \( k_2 = 0.035 \, {cm/s} \). The cross-sectional area of the horizontal pipe is 100 cm², and the head difference (\( \Delta h \)) is 150 cm. The discharge (in cm³/s) through the soils is ........ (rounded off to 2 decimal places).

The most suitable test for measuring the permeability of clayey soils in the laboratory is ___________.
 
Consider the beam ACDEB given in the figure. Which of the following statements is/are correct:

The figures, I, II, and III are parts of a sequence. Which one of the following options comes next in the sequence as IV?
