The foot of perpendicular from the origin $O$ to a plane $P$ which meets the co-ordinate axes at the points $A , B , C$ is $(2, a , 4), a \in N$ If the volume of the tetrahedron $OABC$ is 144 unit $^3$, then which of the following points is NOT on $P$ ?
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
Three-dimensional space is also named 3-space or tri-dimensional space.
It is a geometric setting that carries three values needed to set the position of an element. In Mathematics and Physics, a sequence of ‘n’ numbers can be acknowledged as a location in ‘n-dimensional space’. When n = 3 it is named a three-dimensional Euclidean space.
The Distance Formula Between the Two Points in Three Dimension is as follows;
The distance between two points P1 and P2 are (x1, y1) and (x2, y2) respectively in the XY-plane is expressed by the distance formula,
Read More: Coordinates of a Point in Three Dimensions