Given three identical spheres of mass \(2M\) placed at the corners of a right-angled triangle. The sides of the triangle are 4 m each. Let the point of intersection of the two sides be the origin \((0, 0)\). The position vectors of the masses are:
The position vector of the center of mass is given by:
\[ r_{\text{com}} = \frac{m_1 r_1 + m_2 r_2 + m_3 r_3}{m_1 + m_2 + m_3} \]
Substituting the values:
\[ r_{\text{com}} = \frac{2M \times (0, 0) + 2M \times (4, 0) + 2M \times (0, 4)}{6M} = \left(\frac{4}{3}, \frac{4}{3}\right) \]
Magnitude of \(r_{\text{com}}\):
\[ |r_{\text{com}}| = \sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^2} = \sqrt{\frac{16}{9} + \frac{16}{9}} = \sqrt{\frac{32}{9}} = \frac{4\sqrt{2}}{3} \]
Thus, \(x = 3\).