Let the distance between the tower and the building be \( AB = 10\sqrt{3} \). Let \( C \) be the top of the tower, and \( D \) be the top of the building.
From triangle \( \triangle CAB \): \[ \tan(60^\circ) = \frac{h_1}{10\sqrt{3}} \Rightarrow \sqrt{3} = \frac{h_1}{10\sqrt{3}} \Rightarrow h_1 = 30 \] From triangle \( \triangle DAB \): \[ \tan(30^\circ) = \frac{h_2}{10\sqrt{3}} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h_2}{10\sqrt{3}} \Rightarrow h_2 = 10 \] So, the total height = \( h_1 + h_2 = 30 + 10 = 40 \)
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.
Match the pollination types in List-I with their correct mechanisms in List-II:
List-I (Pollination Type) | List-II (Mechanism) |
---|---|
A) Xenogamy | I) Genetically different type of pollen grains |
B) Ophiophily | II) Pollination by snakes |
C) Chasmogamous | III) Exposed anthers and stigmas |
D) Cleistogamous | IV) Flowers do not open |