Let the distance between the tower and the building be \( AB = 10\sqrt{3} \). Let \( C \) be the top of the tower, and \( D \) be the top of the building.
From triangle \( \triangle CAB \): \[ \tan(60^\circ) = \frac{h_1}{10\sqrt{3}} \Rightarrow \sqrt{3} = \frac{h_1}{10\sqrt{3}} \Rightarrow h_1 = 30 \] From triangle \( \triangle DAB \): \[ \tan(30^\circ) = \frac{h_2}{10\sqrt{3}} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h_2}{10\sqrt{3}} \Rightarrow h_2 = 10 \] So, the total height = \( h_1 + h_2 = 30 + 10 = 40 \)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.