The surface integral \( \int_S x^2 \, dS \) over the upper hemisphere
\[ z = \sqrt{1 - x^2 - y^2} \]
with radius 1 is ..........
If \( F = F(x, y, z) = \dfrac{x^2 y^2 z^2}{x^2 + y^2 + z^2} \), \( G = G(x, y, z) = \log\left(\dfrac{xy + yz + zx}{x^2 + y^2 + z^2}\right) \), and \( H = F + G \), then \[ x \dfrac{\partial H}{\partial x} + y \dfrac{\partial H}{\partial y} + z \dfrac{\partial H}{\partial z} = \text{...........} \]
Let \( f(x) = x^3 - \frac{9}{2}x^2 + 6x - 2 \) be a function defined on the closed interval [0, 3]. Then, the global maximum value of \( f(x) \) is _______