Given the equation:
\[
2\sin^2 \theta - \cos^2 \theta = \sin \theta
\]
Step 1: Use the Pythagorean identity \(\cos^2 \theta = 1 - \sin^2 \theta\) to rewrite the equation:
\[
2\sin^2 \theta - (1 - \sin^2 \theta) = \sin \theta
\]
\[
2\sin^2 \theta - 1 + \sin^2 \theta = \sin \theta
\]
\[
3 \sin^2 \theta - 1 = \sin \theta
\]
Step 2: Rearrange the equation to standard quadratic form in terms of \(\sin \theta\):
\[
3 \sin^2 \theta - \sin \theta - 1 = 0
\]
Step 3: Let \(x = \sin \theta\), then solve:
\[
3x^2 - x - 1 = 0
\]
Step 4: Use the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\) where \(a=3\), \(b=-1\), \(c=-1\):
\[
x = \frac{1 \pm \sqrt{(-1)^2 - 4 \times 3 \times (-1)}}{2 \times 3} = \frac{1 \pm \sqrt{1 + 12}}{6} = \frac{1 \pm \sqrt{13}}{6}
\]
Step 5: Calculate the two roots:
\[
x_1 = \frac{1 + \sqrt{13}}{6} \approx 0.7676
\]
\[
x_2 = \frac{1 - \sqrt{13}}{6} \approx -0.4343
\]
Both values lie within the valid range of \(\sin \theta\) (i.e., \(-1 \leq \sin \theta \leq 1\)).
Step 6: Find the general solution for each root:
For \(\sin \theta = 0.7676\),
\[
\theta = \sin^{-1}(0.7676) + 2n\pi \quad \text{or} \quad \pi - \sin^{-1}(0.7676) + 2n\pi,
\]
where \(n \in \mathbb{Z}\).
Calculate \(\sin^{-1}(0.7676) \approx 0.876\) radians.
So,
\[
\theta = 0.876 + 2n\pi \quad \text{or} \quad 2.266 + 2n\pi.
\]
For \(\sin \theta = -0.4343\),
\[
\theta = \sin^{-1}(-0.4343) + 2n\pi \quad \text{or} \quad \pi - \sin^{-1}(-0.4343) + 2n\pi.
\]
Calculate \(\sin^{-1}(-0.4343) \approx -0.448\) radians.
So,
\[
\theta = -0.448 + 2n\pi \quad \text{or} \quad 3.590 + 2n\pi.
\]
Thus, the general solutions are:
\[
\boxed{
\begin{cases}
\theta = 0.876 + 2n\pi, \quad \theta = 2.266 + 2n\pi, \\
\theta = -0.448 + 2n\pi, \quad \theta = 3.590 + 2n\pi,
\end{cases} \quad n \in \mathbb{Z}.
}
\]