We are given the differential equation \(x^2 dy - 2xy dx = x^4 \cos x \, dx\) and we need to find the general solution.
First, rewrite the equation as:
\(x^2 dy = 2xy dx + x^4 \cos x \, dx\)
Divide both sides by \(x^2\):
\(dy = \frac{2xy}{x^2} dx + \frac{x^4}{x^2} \cos x \, dx\)
\(dy = \frac{2y}{x} dx + x^2 \cos x \, dx\)
\(\frac{dy}{dx} = \frac{2y}{x} + x^2 \cos x\)
\(\frac{dy}{dx} - \frac{2}{x} y = x^2 \cos x\)
This is a first-order linear differential equation in the form \(\frac{dy}{dx} + P(x)y = Q(x)\), where \(P(x) = -\frac{2}{x}\) and \(Q(x) = x^2 \cos x\).
Find the integrating factor \(I(x) = e^{\int P(x) dx} = e^{\int -\frac{2}{x} dx} = e^{-2 \ln x} = e^{\ln x^{-2}} = x^{-2} = \frac{1}{x^2}\).
Multiply the differential equation by the integrating factor:
\(\frac{1}{x^2} \frac{dy}{dx} - \frac{2}{x^3} y = \cos x\)
\(\frac{d}{dx} (\frac{1}{x^2} y) = \cos x\)
Integrate both sides with respect to x:
\(\int \frac{d}{dx} (\frac{1}{x^2} y) dx = \int \cos x \, dx\)
\(\frac{y}{x^2} = \sin x + c\)
\(y = x^2 \sin x + c x^2\)
Therefore, the general solution of the differential equation is \(y = x^2 \sin x + c x^2\).
Thus, the correct option is (A) \(y = x^2 \sin x + cx^2\).
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :