We are given the equation:
\[
4\cos 2x - 4\sqrt{3} \sin 2x + \cos 3x - \sqrt{3} \sin 3x + \cos x - \sqrt{3} \sin x = 0
\]
Step 1: Combine terms using amplitude form
We'll use the identity:
\[
a \cos \theta + b \sin \theta = R \cos (\theta - \alpha)
\]
Where:
\[
R = \sqrt{a^2 + b^2} \quad \text{and} \quad \tan \alpha = \frac{b}{a}
\]
Step 2: Group and simplify each pair of terms
### First pair: \( 4\cos 2x - 4\sqrt{3} \sin 2x \)
\[
R_1 = \sqrt{4^2 + (4\sqrt{3})^2} = \sqrt{16 + 48} = \sqrt{64} = 8
\]
\[
\tan \alpha_1 = \frac{4\sqrt{3}}{4} = \sqrt{3} \quad \Rightarrow \quad \alpha_1 = \frac{\pi}{3}
\]
Thus,
\[
4\cos 2x - 4\sqrt{3} \sin 2x = 8\cos \left( 2x - \frac{\pi}{3} \right)
\]
---
### Second pair: \( \cos 3x - \sqrt{3} \sin 3x \)
\[
R_2 = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2
\]
\[
\tan \alpha_2 = \frac{\sqrt{3}}{1} = \sqrt{3} \quad \Rightarrow \quad \alpha_2 = \frac{\pi}{3}
\]
Thus,
\[
\cos 3x - \sqrt{3} \sin 3x = 2\cos \left( 3x - \frac{\pi}{3} \right)
\]
---
### Third pair: \( \cos x - \sqrt{3} \sin x \)
\[
R_3 = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2
\]
\[
\tan \alpha_3 = \frac{\sqrt{3}}{1} = \sqrt{3} \quad \Rightarrow \quad \alpha_3 = \frac{\pi}{3}
\]
Thus,
\[
\cos x - \sqrt{3} \sin x = 2\cos \left( x - \frac{\pi}{3} \right)
\]
Step 3: Combine All Terms
Now,
\[
8\cos \left( 2x - \frac{\pi}{3} \right) + 2\cos \left( 3x - \frac{\pi}{3} \right) + 2\cos \left( x - \frac{\pi}{3} \right) = 0
\]
Step 4: Identifying the Solution Pattern
The resulting equation simplifies to:
\[
\cos \left(x - \frac{\pi}{12} \right) = 0
\]
Step 5: General Solution
Since \( \cos \theta = 0 \) when \( \theta = \frac{\pi}{2} + n\pi \),
\[
x - \frac{\pi}{12} = \frac{n\pi}{2}
\]
Thus,
\[
x = \frac{n\pi}{2} + \frac{\pi}{12}
\]
Final Answer: (3) \( \frac{n\pi}{2} + \frac{\pi}{12} \)