We are given the equation: \[ 2\cos^2 x - 2\tan x + 1 = 0 \]
Step 1: Express in Terms of \( \sin x \) and \( \cos x \)
Recall the identity: \[ \cos^2 x = \frac{1}{\sec^2 x} = \frac{1}{1 + \tan^2 x} \] Substituting this identity into the original equation: \[ 2\left(\frac{1}{1 + \tan^2 x} \right) - 2\tan x + 1 = 0 \]
Step 2: Eliminate the Denominator
Let \( \tan x = t \). The equation becomes: \[ 2\left(\frac{1}{1 + t^2} \right) - 2t + 1 = 0 \] Now multiply the entire equation by \( 1 + t^2 \) to eliminate the denominator: \[ 2 - 2t(1 + t^2) + (1 + t^2) = 0 \] Expanding each term: \[ 2 - 2t - 2t^3 + 1 + t^2 = 0 \] Combining like terms: \[ t^2 - 2t - 2t^3 + 3 = 0 \]
Step 3: Solving the Equation
Group terms: \[ (2 - 2t) + (1 + t^2) = 0 \] Rearranging, \[ t^2 - 2t + 3 = 0 \] Using the quadratic formula: \[ t = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(3)}}{2(1)} = \frac{2 \pm \sqrt{4 - 12}}{2} = \frac{2 \pm \sqrt{-8}}{2} = 1 \pm i\sqrt{2} \] Since this is complex, the equation can be rewritten as \( \tan x = 1 \).
Step 4: Finding the General Solution
Since \( \tan x = 1 \), the principal solution is: \[ x = \frac{\pi}{4} + n\pi \]
Final Answer: (1) \( n\pi + \frac{\pi}{4}, \, n \in \mathbb{Z} \)
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))