For the function to be increasing for all real \( x \), its first derivative must be positive for all \( x \):
\[
f(x) = x^3 - ax^2 + 48x + 7 \Rightarrow f'(x) = 3x^2 - 2ax + 48
\]
We want:
\[
f'(x)>0 \quad \forall x \in \mathbb{R}
\Rightarrow \text{Quadratic } 3x^2 - 2ax + 48>0 \text{ for all } x
\]
This happens when the discriminant \( D<0 \):
\[
D = (-2a)^2 - 4 \cdot 3 \cdot 48 = 4a^2 - 576<0
\Rightarrow a^2<144 \Rightarrow a \in (-12, 12)
\]
Hence:
\[
\boxed{a \in (-12, 12)}
\]