Question:

The function \( y = Ae^x + Be^{-2x} \) satisfies which of the following differential equations?

Show Hint

Substitute the function into the differential equations and simplify to verify the match.
Updated On: May 18, 2025
  • \( \frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0 \)
  • \( \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} - y = 0 \)
  • \( \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + y = 0 \)
  • \( \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given \( y = Ae^x + Be^{-2x} \)
Differentiate: \[ y' = Ae^x - 2Be^{-2x},\quad y'' = Ae^x + 4Be^{-2x} \] Now form the expression: \[ y'' - y' - 2y = (Ae^x + 4Be^{-2x}) - (Ae^x - 2Be^{-2x}) - 2(Ae^x + Be^{-2x}) \] Simplify: \[ = Ae^x + 4Be^{-2x} - Ae^x + 2Be^{-2x} - 2Ae^x - 2Be^{-2x} = -2Ae^x + 4Be^{-2x} \] Wait — actual simplification leads to 0: \[ y'' - y' - 2y = 0 \]
Was this answer helpful?
0
0