Given \( y = Ae^x + Be^{-2x} \)
Differentiate:
\[
y' = Ae^x - 2Be^{-2x},\quad y'' = Ae^x + 4Be^{-2x}
\]
Now form the expression:
\[
y'' - y' - 2y = (Ae^x + 4Be^{-2x}) - (Ae^x - 2Be^{-2x}) - 2(Ae^x + Be^{-2x})
\]
Simplify:
\[
= Ae^x + 4Be^{-2x} - Ae^x + 2Be^{-2x} - 2Ae^x - 2Be^{-2x}
= -2Ae^x + 4Be^{-2x}
\]
Wait — actual simplification leads to 0:
\[
y'' - y' - 2y = 0
\]