The function \( y = 2x^3 - 8x^2 + 10x - 4 \) is defined on \([1,2]\). If the tangent drawn at a point \( (a,b) \) on the graph of this function is parallel to the X-axis and \( a \in (1,2) \), then \( a = \) ?
\( \frac{5}{3} \)
Step 1: Understanding the Condition for a Tangent Parallel to X-axis The equation of the given function is: \[ y = 2x^3 - 8x^2 + 10x - 4 \] For the tangent to be parallel to the X-axis, its slope must be zero. The slope of the tangent is given by the first derivative of \( y \), i.e., \[ \frac{dy}{dx} = 0 \]
Step 2: Compute the First Derivative \[ \frac{dy}{dx} = \frac{d}{dx} (2x^3 - 8x^2 + 10x - 4) \] \[ = 6x^2 - 16x + 10 \] Setting \( \frac{dy}{dx} = 0 \) for the required condition: \[ 6x^2 - 16x + 10 = 0 \]
Step 3: Solve for \( x \) Solving the quadratic equation: \[ 6x^2 - 16x + 10 = 0 \] Using the quadratic formula: \[ x = \frac{-(-16) \pm \sqrt{(-16)^2 - 4(6)(10)}}{2(6)} \] \[ x = \frac{16 \pm \sqrt{256 - 240}}{12} \] \[ x = \frac{16 \pm \sqrt{16}}{12} \] \[ x = \frac{16 \pm 4}{12} \] \[ x = \frac{16 + 4}{12} = \frac{20}{12} = \frac{5}{3}, \quad x = \frac{16 - 4}{12} = \frac{12}{12} = 1 \]
Step 4: Selecting the Correct Value of \( a \) Since \( a \in (1,2) \), the valid solution is: \[ a = \frac{5}{3} \]
\[ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).
\[ y = \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x))} + \dots \infty}} \]
Find \( \frac{dy}{dx} \) for the given function:
\[ y = \tan^{-1} \left( \frac{\sin^3(2x) - 3x^2 \sin(2x)}{3x \sin(2x) - x^3} \right). \]