We are given the function \( f(x) = |x| + |x - 2| \).
First, we check the continuity at the points where \( x = 0 \) and \( x = 2 \). At \( x = 0 \), the function is continuous because the left and right limits match.
However, the function is not differentiable at \( x = 0 \) because the slope changes abruptly from negative to positive. At \( x = 2 \), the function is continuous as both left and right limits match.
However, the function is not differentiable at \( x = 2 \) due to an abrupt change in slope.
Thus, the function is continuous but not differentiable at both points \( x = 0 \) and \( x = 2 \).
The equation of a closed curve in two-dimensional polar coordinates is given by \( r = \frac{2}{\sqrt{\pi}} (1 - \sin \theta) \). The area enclosed by the curve is ___________ (answer in integer).

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?