We are given the function:
\[
f(x) = \tan^{-1} (\sin x + \cos x).
\]
Step 1: Differentiate the function.
The derivative of \( f(x) \) is:
\[
f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot (\cos x - \sin x).
\]
Using a trigonometric identity, we can simplify:
\[
\sin x + \cos x = \sqrt{2} \sin \left( x + \frac{\pi}{4} \right).
\]
Substituting this into the derivative:
\[
f'(x) = \frac{\sqrt{2} \cos \left( x + \frac{\pi}{4} \right)}{1 + (\sin x + \cos x)^2}.
\]
Step 2: Find the interval where \( f'(x)>0 \).
To have \( f'(x)>0 \), the numerator \( \sqrt{2} \cos \left( x + \frac{\pi}{4} \right) \) must be positive. This implies:
\[
\cos \left( x + \frac{\pi}{4} \right)>0.
\]
The cosine function is positive in the first and fourth quadrants. Solving:
\[
-\frac{\pi}{2}<x + \frac{\pi}{4}<0.
\]
Rearranging the inequality:
\[
-\frac{\pi}{2} - \frac{\pi}{4}<x<0 + \frac{\pi}{4}.
\]
Simplifying:
\[
-\frac{3\pi}{4}<x<\frac{\pi}{4}.
\]
Step 3: Confirm the function's increasing behavior.
In the interval \( \left( -\frac{3\pi}{4}, \frac{\pi}{4} \right) \), \( f'(x)>0 \), which indicates that \( f(x) \) is an increasing function.
Final Answer:
\[
\boxed{\left( -\frac{3\pi}{4}, \frac{\pi}{4} \right)}
\]