The function $f(x)=\begin{cases}-x,\; -\pi<x<0 \\ x,\; 0<x<\pi\end{cases}$ is expanded as a Fourier series of the form $a_0 + \sum_{n=1}^{\infty}a_n\cos(nx)+\sum_{n=1}^{\infty}b_n\sin(nx)$. Which of the following is true?
Step 1: Identify symmetry of the function.
$f(x) = -x$ for $x<0$ and $x$ for $x>0$ ⇒ this is an odd function:
$f(-x) = -f(x)$.
Step 2: Fourier coefficients for odd functions.
For any odd function:
• $a_0 = 0$,
• all cosine coefficients $a_n = 0$,
• only sine terms $b_n$ survive.
Step 3: Conclusion.
Thus the Fourier series contains only sine terms: $a_0=0$ and $b_n\neq 0$.
This corresponds to option (D).

