The following table shows the ages of the patients admitted in a hospital during a year. Find the mode and the median of these data.
\[\begin{array}{|c|c|c|c|c|c|c|} \hline Age (in years) & 5-15 & 15-25 & 25-35 & 35-45 & 45-55 & 55-65 \\ \hline \text{Number of patients} & \text{6} & \text{11} & \text{21} & \text{23} & \text{14} & \text{5} \\ \hline \end{array}\]
Find the mean and mode of the following data:
Class | 15--20 | 20--25 | 25--30 | 30--35 | 35--40 | 40--45 |
Frequency | 12 | 10 | 15 | 11 | 7 | 5 |
The sum of a two-digit number and the number obtained by reversing the digits is $88$. If the digits of the number differ by $4$, find the number. How many such numbers are there?
OR
The length of a rectangular field is $9$ m more than twice its width. If the area of the field is $810\ \text{m}^2$, find the length and width of the field.
In the figure, $DE \parallel AC$ and $DF \parallel AE$. Prove that $\dfrac{BF}{FE} = \dfrac{BE}{EC}$.
A solid is a cone standing on a hemisphere with both radii $2$ cm and the slant height of the cone $=2\sqrt{2}$ cm. Find the volume of the solid. (Use $\pi=3.14$)
The shadow of a tower on level ground is $30\ \text{m}$ longer when the sun's altitude is $30^\circ$ than when it is $60^\circ$. Find the height of the tower. (Use $\sqrt{3}=1.732$.)
The following table shows the literacy rate (in percent) of 35 cities. Find the mean literacy rate.
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Literacy rate (in \%)} & 45-55 & 55-65 & 65-75 & 75-85 & 85-95 \\ \hline \text{Number of cities} & 3 & 10 & 11 & 8 & 3 \\ \hline \end{array}\]