Question:

Find the mean and mode of the following data:

Class15--2020--2525--3030--3535--4040--45
Frequency1210151175

Show Hint

For mean, use assumed mean method for easier calculation. For mode, identify the class with highest frequency and apply the mode formula.
Updated On: May 20, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Given Data:

Class IntervalFrequency (f)
15--2012
20--2510
25--3015
30--3511
35--407
40--455

Mean Calculation:

The mean of grouped data is given by the formula:

\[ \bar{x} = \frac{\sum f_i x_i}{\sum f_i} \]

Calculate midpoints \( x_i \) of each class:

Class Interval\( f_i \)\( x_i \)\( f_i x_i \)
15--201217.5210.0
20--251022.5225.0
25--301527.5412.5
30--351132.5357.5
35--40737.5262.5
40--45542.5212.5
Total601680.0

\[ \bar{x} = \frac{1680.0}{60} = 28.0 \]

Mean = 28.0

Mode Calculation:

Modal class is 25--30 (highest frequency = 15)

Use the mode formula:

\[ \text{Mode} = L + \left( \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right) \times h \]

Where:

  • \( L = 25 \)
  • \( f_1 = 15 \)
  • \( f_0 = 10 \)
  • \( f_2 = 11 \)
  • \( h = 5 \)

\[ \text{Mode} = 25 + \left( \frac{15 - 10}{2 \times 15 - 10 - 11} \right) \times 5 = 25 + \left( \frac{5}{9} \right) \times 5 \]

\[ \text{Mode} = 25 + \frac{25}{9} \approx 25 + 2.78 = 27.78 \]

Mode ≈ 27.78

Final Answers:

  • Mean = 28.0
  • Mode ≈ 27.78
Was this answer helpful?
1
0

Questions Asked in CBSE X exam

View More Questions