Step 1: Recall the empirical relationship between mean, median, and mode
\[
\text{Mode} = 3 \times \text{Median} - 2 \times \text{Mean}
\]
Step 2: Substitute values
\[
\text{Mode} = 3(25.8) - 2(26.1)
\]
\[
= 77.4 - 52.2
\]
\[
= 25.2
\]
Step 3: Verify with options
Correct mode $= 25.2$. So the correct option is (C).
\[
\boxed{\text{Mode} = 25.2}
\]
The following table shows the ages of the patients admitted in a hospital during a year. Find the mode and the median of these data.
\[\begin{array}{|c|c|c|c|c|c|c|} \hline Age (in years) & 5-15 & 15-25 & 25-35 & 35-45 & 45-55 & 55-65 \\ \hline \text{Number of patients} & \text{6} & \text{11} & \text{21} & \text{23} & \text{14} & \text{5} \\ \hline \end{array}\]
Find the mean and mode of the following data:
| Class | 15--20 | 20--25 | 25--30 | 30--35 | 35--40 | 40--45 |
| Frequency | 12 | 10 | 15 | 11 | 7 | 5 |
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.