The following determinant is equal to:
\[ \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix} \]We are given the determinant:
\[ D = \begin{vmatrix} \sin^2 x & \cos^2 x & 1 \\ \cos^2 x & \sin^2 x & 1 \\ -10 & 12 & 2 \end{vmatrix} \]We evaluate this determinant using cofactor expansion along the first row:
\[ D = \sin^2 x \begin{vmatrix} \sin^2 x & 1 \\ 12 & 2 \end{vmatrix} - \cos^2 x \begin{vmatrix} \cos^2 x & 1 \\ -10 & 2 \end{vmatrix} + 1 \begin{vmatrix} \cos^2 x & \sin^2 x \\ -10 & 12 \end{vmatrix} \]Using the determinant formula for a \(2 \times 2\) matrix:
\[ \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \]First determinant:
\[ \begin{vmatrix} \sin^2 x & 1 \\ 12 & 2 \end{vmatrix} = (\sin^2 x \cdot 2) - (1 \cdot 12) = 2\sin^2 x - 12 \]Second determinant:
\[ \begin{vmatrix} \cos^2 x & 1 \\ -10 & 2 \end{vmatrix} = (\cos^2 x \cdot 2) - (1 \cdot (-10)) = 2\cos^2 x + 10 \]Third determinant:
\[ \begin{vmatrix} \cos^2 x & \sin^2 x \\ -10 & 12 \end{vmatrix} = (\cos^2 x \cdot 12) - (\sin^2 x \cdot (-10)) = 12\cos^2 x + 10\sin^2 x \]Expanding each term:
\[ D = 2\sin^4 x - 12\sin^2 x - 2\cos^4 x - 10\cos^2 x + 12\cos^2 x + 10\sin^2 x \]Rearrange terms:
\[ D = 2\sin^4 x - 2\cos^4 x - 12\sin^2 x - 10\cos^2 x + 12\cos^2 x + 10\sin^2 x \]Factor:
\[ D = 2(\sin^4 x - \cos^4 x) - (12\sin^2 x - 10\sin^2 x) + (12\cos^2 x - 10\cos^2 x) \]Using the identity \( \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) = (\sin^2 x - \cos^2 x)(1) \), we get:
\[ D = 2(\sin^2 x - \cos^2 x) - 2\sin^2 x + 2\cos^2 x \]Since \( 2\cos^2 x - 2\cos^2 x = 0 \) and \( 2\sin^2 x - 2\sin^2 x = 0 \), we obtain:
\[ D = 0 \]Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :