(a) If we fix the mass of dinitrogen at \(28 \;g\), then the masses of dioxygen that will combine with the fixed mass of dinitrogen are \(32 \;g\), \(64 \;g\), \(32 \;g\), and \(80 \;g\). The masses of dioxygen bear a whole number ratio of \(1:2:2:5\).
Hence, the given experimental data obeys the law of multiple proportions.
The law states that if two elements combine to form more than one compound, then the masses of one element that combines with the fixed mass of another element are in the ratio of small whole numbers.
(b) (i) \(1\; km =\) \(1\; km × \frac{1000 m }{ 1 km} × \frac{100 cm }{ 1 m} × \frac{10 mm }{ 1 cm}\)
\(1 km = 10 ^6 mm\)
\(1\; km =\) \(1 km × \frac{1000 m }{ 1 km} ×\frac{ 1 pm }{ 10 ^{-12} m}\)
∴ \(1\; km = 10 ^{15} pm\)
Hence, \(1\; km\) = \(10^ 6 mm\) = \(10 ^15 \;pm\)
(ii) \(1\; mg = 1\; mg ×\) \(\frac{1\, g }{ 1000 \,mg} × \frac{1 \,kg }{ 1000 \,g}\)
\(\Rightarrow 1\; mg =\) \(10 ^{-6}\; kg\)
\(1\; mg = 1\; mg × \frac{1 g }{ 1000 mg} × \frac{1 ng }{ 10^{-9} g}\)
\(\Rightarrow 1 \;mg = 10^ 6\; ng\)
∴ \(1 \;mg = 10 ^{-6}\; kg = 10 ^6 \; ng\)
(iii) \(1\; mL = 1 \;mL × \frac{1 \,L }{ 1000 \,mL}\)
\(\Rightarrow 1 \;mL = 10 ^{-3}\; L\)
\(1\; mL = 1\; cm^3 = 1 \;cm^3 \frac{1 dm × 1 dm × 1 dm}{ 10 cm × 10 cm × 10 cm}\)
\(\Rightarrow 1\; mL = 10 ^{-3} dm^3\)
\(\therefore\) \(1\; mL = 10 ^{-3}\; L = 10 ^{-3} \;dm^3\)
LIST I | LIST II | ||
A. | \(K_2SO_4(aq)\) with 60% dissociation | I. | \(i =3.7\) |
B. | \(K_3[Fe(CN)_6](aq)\) with 90% dissociation | II. | \(i= 1.8\) |
C. | \(AlCl_3 (aq)\) with 80% dissociation | III. | \(i=2.2\) |
D. | \(K_2HgI_4 (aq)\) with 40% dissociation | IV. | \(i= 3.4\) |
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?