Ellipse: $\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1$ ⇒ $a^2 = 9$, $b^2 = 4$ ⇒ $c = \sqrt{a^2 - b^2} = \sqrt{5}$
Foci: $(\pm \sqrt{5}, 0)$
Point $P = \left(\dfrac{4}{\sqrt{5}}, \dfrac{3}{\sqrt{5}}\right)$
Distance to $(\sqrt{5}, 0) = \sqrt{\left(\dfrac{4}{\sqrt{5}} - \sqrt{5}\right)^2 + \left(\dfrac{3}{\sqrt{5}}\right)^2} = \sqrt{4}$
Distance to $(-\sqrt{5}, 0) = \sqrt{\left(\dfrac{4}{\sqrt{5}} + \sqrt{5}\right)^2 + \left(\dfrac{3}{\sqrt{5}}\right)^2} = \sqrt{16} = 4$
Hence distances are $4$ and $2$