Question:

The focal distances of the point $\left(\dfrac{4}{\sqrt{5}}, \dfrac{3}{\sqrt{5}}\right)$ on the ellipse $\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1$ are

Show Hint

Use focal length $c$ and distance formula to compute distances from given point to ellipse foci.
Updated On: May 19, 2025
  • $\dfrac{10}{3}, \dfrac{2}{3}$
  • $3, 1$
  • $\dfrac{13}{3}, \dfrac{5}{3}$
  • $4, 2$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Ellipse: $\dfrac{x^2}{4} + \dfrac{y^2}{9} = 1$ ⇒ $a^2 = 9$, $b^2 = 4$ ⇒ $c = \sqrt{a^2 - b^2} = \sqrt{5}$
Foci: $(\pm \sqrt{5}, 0)$
Point $P = \left(\dfrac{4}{\sqrt{5}}, \dfrac{3}{\sqrt{5}}\right)$
Distance to $(\sqrt{5}, 0) = \sqrt{\left(\dfrac{4}{\sqrt{5}} - \sqrt{5}\right)^2 + \left(\dfrac{3}{\sqrt{5}}\right)^2} = \sqrt{4}$
Distance to $(-\sqrt{5}, 0) = \sqrt{\left(\dfrac{4}{\sqrt{5}} + \sqrt{5}\right)^2 + \left(\dfrac{3}{\sqrt{5}}\right)^2} = \sqrt{16} = 4$
Hence distances are $4$ and $2$
Was this answer helpful?
0
0